
DBSP𝐷𝑅𝑃

Aug 18, 2021

Contents:

1 Installing DBSP_DRP 1
1.1 From Source . 1
1.2 Using pip . 1

2 Post-Install 3
2.1 Testing your installation . 3

3 Using DBSP_DRP 5

4 Using the Manual Tracing and Manual Aperture GUIs 7
4.1 Manual Tracing GUI . 7
4.2 Manual Aperture and Sky Selection GUI . 8

5 DBSP_DRP QA Outputs 11

6 DBSP Quicklook 13
6.1 Usage . 13

7 Adjusting splicing between arms 15

8 Data Reduction Outputs 17

9 dbsp_drp 19
9.1 dbsp_drp package . 19

10 Indices and tables 21

i

ii

CHAPTER 1

Installing DBSP_DRP

Conda is the recommended pacakage manager used to install DBSP_DRP.

1.1 From Source

$ git clone https://github.com/finagle29/DBSP_DRP.git
$ cd DBSP_DRP
$ conda env create -f environment.yml
$ conda activate dbsp_drp
$ pip install -e .

This performs an editable install, which allows you to make modifications to the code and immediately see their
effects. Importantly, this can be used in combination with git branches to test features in development.

1.2 Using pip

First download the provided environment.yml file

Now use the environment.yml file to create a conda environment with the required dependencies.

$ cd /path/to/Downloads
$ conda env create -f environment.yml
$ conda activate dbsp_drp

Now use pip to install DBSP_DRP

$ pip install git+https://github.com/finagle29/DBSP_DRP.git

1

https://raw.githubusercontent.com/finagle29/DBSP_DRP/master/environment.yml

DBSP𝐷𝑅𝑃

2 Chapter 1. Installing DBSP_DRP

CHAPTER 2

Post-Install

The telluric correction code provided by PypeIt relies on a large (5 GB) atmospheric model file (Tell-
Fit_Lick_3100_11100_R10000.fits), which can be downloaded here and must be installed into the pypeit/data/
telluric/atm_grids directory of your PypeIt installation.

To determine the location of your PypeIt installation, open the Python interpreter and run

>>> import pypeit
>>> import os
>>> print(os.path.dirname(pypeit.__file__))
/Users/me/anaconda3/envs/dbsp_drp/lib/python3.7/site-packages/pypeit

An easier alternative is to download and run this script, which will perform the download and install it into the current
PypeIt installation.

$ cd /path/to/Downloads
$ chmod +x download_tellfile
$./download_tellfile

If you have multiple PypeIt installations on the same machine, you can create a hard link from the one PypeIt instal-
lation to the others so you can reuse the atmospheric model file.

$ ln /path/to/stable/pypeit/data/telluric/atm_grids/TellFit_Lick_3100_11100_R10000.
→˓fits /path/to/other/pypeit/data/telluric/atm_grids/TellFit_Lick_3100_11100_R10000.
→˓fits

Make sure to use the same filename in both PypeIt installations. If you’re not sure where your PypeIt installations are,
run the previous Python snippet in each conda or venv environment you want to use DBSP_DRP in.

2.1 Testing your installation

Make sure your PypeIt installation was successful

3

https://drive.google.com/drive/folders/1FFRWjUZ58HiDuDD33MYqBzMWDQanBRRy
https://raw.githubusercontent.com/finagle29/DBSP_DRP/master/bin/download_tellfile

DBSP𝐷𝑅𝑃

$ run_pypeit -h

Run some built-in tests for DBSP_DRP, including verification that the quicklook script works

$ cd /path/to/DBSP_DRP
$ pytest .

4 Chapter 2. Post-Install

CHAPTER 3

Using DBSP_DRP

After Installing DBSP_DRP, you are ready to reduce some DBSP data!

$ dbsp_reduce --help
usage: dbsp_reduce [-h] [-i] -r ROOT -d OUTPUT_PATH [-a {red,blue}] [-m]

[--debug] [-j N] [-p PARAMETER_FILE] [-t] [-c]
[--splicing-interpolate-gaps]

Automatic Data Reduction Pipeline for P200 DBSP

optional arguments:
-h, --help show this help message and exit
-i, --no-interactive Interactive file-checking?
-r ROOT, --root ROOT File path+root, e.g. /data/DBSP_20200127
-d OUTPUT_PATH, --output_path OUTPUT_PATH

Path to top-level output directory. Default is the
→˓current working directory.

-a {red,blue}, --arm {red,blue}
[red, blue] to only reduce one arm (null splicing)

-m, --manual-extraction
manual extraction

--debug debug
-j N, --jobs N Number of processes to use
-p PARAMETER_FILE, --parameter-file PARAMETER_FILE

Path to parameter file. The parameter file should be
→˓formatted as follows:

[blue]

** PypeIt parameters for the blue side goes here **
[red]

** PypeIt parameters for the red side goes here **
EOF

The [red/blue] parameter blocks are optional, and their
→˓order does not matter.

(continues on next page)

5

DBSP𝐷𝑅𝑃

(continued from previous page)

-t, --skip-telluric Skip telluric correction
-c, --null-coadd Don't coadd consecutive exposures of the same target.

By default consective exposures will be coadded.
--splicing-interpolate-gaps

Use this option to linearly interpolate across large gaps
in the spectrum during splicing. The default behavior is

→˓to
only use data from one detector in these gaps, which

→˓results
in a slightly noisier spliced spectrum.

The basic usage of DBSP_DRP is as follows:

$ dbsp_reduce -r /path/to/data/DBSP_YYYYMMDD/ -d /output/path/DBSP_YYYYMMDD_redux

When reducing a night of data on a machine with multiple CPU cores, it is highly recommended to add the -j N flag
to use N jobs for the telluric correction.

Note: the default setting is to open a GUI that allows you to verify that the header data is correct for all of the files.
Add the option -i or --no-interactive to turn this behavior off.

If you only want to reduce a subset of your data, you can select unwanted files in the header validation table GUI
and right click to delete them from the current reduction run. Be sure to always keep the standard stars you need for
fluxing in the data reduction.

If you want to only reduce the red arm or the blue arm, add the flag --arm red or -a blue for short.

If you want lots of intermediate debugging plots displayed to the screen, add the flag --debug.

If you want to check that your target traces have been correctly identified, and manually select them if they were
missed, add the flag --manual-extraction or -m for short. Check out Using the Manual Tracing and Manual
Aperture GUIs for more details.

If you want to fine-tune the reduction parameters, create a parameter file like so:

params.cfg
[blue]
PypeIt reduction parameters to control the blue side reduction
[reduce]

[[skysub]]
no_local_sky = True

[[extraction]]
use_2dmodel_mask = False

[red]
PypeIt parameters to control the red side reduction
[reduce]

[[skysub]]
no_local_sky = True

[[extraction]]
use_2dmodel_mask = False

and use the option -p params.cfg or its longer form --parameter-file params.cfg.

See PypeIt Parameters for more details on the full set of available parameters.

6 Chapter 3. Using DBSP_DRP

https://pypeit.readthedocs.io/en/stable/pypeit_par.html

CHAPTER 4

Using the Manual Tracing and Manual Aperture GUIs

4.1 Manual Tracing GUI

After the first round of reducing the red and/or blue sides, dbsp_reduce will open a matplotlib window to display
the sky-subtracted spectra, along with any object traces that were automatically detected.

Using the left and right arrow keys, you can cycle through the spectra.

If your science target was not automatically detected, you can zoom in on the trace using the standard matplotlib zoom
tool and then with your mouse over the trace, press the m key to mark that trace.

If you make a mistake, you can press d with your mouse over a previously-marked trace to delete the trace.

To adjust the region of the spectrum that will be collapsed to select apertures and background regions, press c, then
left click and drag to highlight the region to be collapsed in purple.

After you close this window, for each frame you marked with a manual trace, a window will pop up with a Manual
Aperture and Sky Selection GUI.

7

DBSP𝐷𝑅𝑃

4.2 Manual Aperture and Sky Selection GUI

This GUI shows the collapsed flux, along with any automatically identified traces (in orange) and your manually
placed traces (in blue) along with the FWHM of each shaded in a lighter color.

In this GUI, you can left click and drag your manual traces (in blue) to adjust their position.

Additionally, you can right click and drag the shaded FWHM regions to adjust their extent.

To mark background regions, press b and then left click and drag to mark background regions by shading them in
gray.

You can delete a background region by holding your mouse over the shaded background regions and press d to delete.

Once you are finished adjusting manual traces/FWHMs and marking background regions, close the window to be
shown the same GUI for the next object you marked a manual trace on.

8 Chapter 4. Using the Manual Tracing and Manual Aperture GUIs

DBSP𝐷𝑅𝑃

4.2.1 Tips

Make sure to select background regions on either side of your target for the best sky subtraction.

If you are dealing with faint sources, it is a good idea to re-mark in blue any orange (automatically identified) traces
in case parameter changes lose these objects.

4.2. Manual Aperture and Sky Selection GUI 9

DBSP𝐷𝑅𝑃

10 Chapter 4. Using the Manual Tracing and Manual Aperture GUIs

CHAPTER 5

DBSP_DRP QA Outputs

The QA folder has two main QA pages: MF_A.html and Extraction.html.

MF_A.html is automatically generated by PypeIt and includes a number of QA plots regarding the calibration data,
which currently only encompass the wavelength calibration. You can read in more detail about PypeIt’s QA plots here

In Extraction.html, for each target, there is a page that shows various steps of the reduction for the red and blue
sides. From left to right, the images are flat-fielded frame, sky model, sky-subtracted frame, sky-subtracted residuals,
and sky- and object-subtracted residuals. Above each set of images, the raw filename, time of observation and the
airmass is displayed. Slit edges are marked in red and green, object traces are marked in orange, and extraction
FWHMs are highlighted in orange. If the extraction FWHM is very different from what you would expect, it is
probably a good idea to use manual tracing on that target.

11

https://pypeit.readthedocs.io/en/latest/qa.html

DBSP𝐷𝑅𝑃

12 Chapter 5. DBSP_DRP QA Outputs

CHAPTER 6

DBSP Quicklook

During an observing run, in order to make time-sensitive decisions about what to observe, a quicklook script is pro-
vided.

6.1 Usage

$ dbsp_ql --help
usage: dbsp_ql [-h] [--no-show] fname

Quicklook for P200 DBSP

positional arguments:
fname file to take a quick look at, or else red/blue

to just perform rough calibrations

optional arguments:
-h, --help show this help message and exit
--no-show Set this flag to suppress opening of plots

First, navigate to a directory you want the output data in.

$ cd /path/to/workdir

Then, with at least one arc frame and at least one flat frame in /path/to/calibs run

$ dbsp_ql /path/to/calibs/red
$ dbsp_ql /path/to/calibs/blue

to perform quick calibrations for the red and blue sides, respectively.

Then once you have a science frame (either in the same directory, or elsewhere) in /path/to/science/data,
run

13

DBSP𝐷𝑅𝑃

$ dbsp_ql /path/to/science/data/red0030.fits
$ dbsp_ql /path/to/science/data/blue0030.fits

This step should be very quick (about 15 seconds for the red side, 8 seconds for the blue side), and each command
will pop up a ginga window for you to inspect the sky-subtracted frame. Also, a GUI will pop up to display the fluxed
spectrum for each object identified in the frame.

The quicklook script produces PypeIt 2D Spectrum and 1D Spectrum files, described in Data Reduction Outputs.

14 Chapter 6. DBSP Quicklook

CHAPTER 7

Adjusting splicing between arms

Typically the splicing between arms is quite good, and you only need to adjust it when the optimal extraction FWHM
vary greatly between the red and blue sides. This can happen when an extended object is near another object on the
slit. You can check the extraction FWHM visually by looking at the Extraction QA page.

$ dbsp_adjust_splicing --help
usage: dbsp_adjust_splicing [-h] fname [fname ...]

Red/Blue splicing adjustment for P200 DBSP

positional arguments:
fname Final data output from DBSP_DRP to adjust the splicing of. Can be one

→˓or multiple files.

optional arguments:
-h, --help show this help message and exit

In this GUI, the blue and red spectra are plotted as well as the spliced spectrum. After using the usual Matplotlib tools
to zoom and pan to the region of interest, you can adjust the red multiplier to multiply the red flux by a constant, and
change if flux will be interpolated across detector gaps, as well as save your changes to the same file you opened. After
you close the GUI, you will be presented with the next spectrum to adjust the splicing of.

The default splicing that DBSP_DRP does uses a red multiplier of 1, since the flux calibration provided by PypeIt is
excellent.

15

DBSP𝐷𝑅𝑃

16 Chapter 7. Adjusting splicing between arms

CHAPTER 8

Data Reduction Outputs

Assuming you ran DBSP_DRP with dbsp_reduce -r $RAW_PATH -d $OUTPUT_PATH, then in the
$OUTPUT_PATH/Science directory you will find

PypeIt 2D Spectrum files spec2d_redNNNN-target_DBSPr_obstimestamp.fits described in more detail
here. Briefly, these files hold flat-fielded 2d spectral images, as well as sky, noise, object, wavelength, and bad pixel
mask images. These files can be visually inspected using the command pypeit_show_2dspec SPEC2D_FILE.

PypeIt 1D Spectrum files spec1d_redNNNN-target_DBSPr_obstimstamp.fits described in more de-
tail here. Briefly, these files hold 1d spectra for each object that was traced and extracted from the raw frame.
Each object’s spectrum is stored in a separate extension of the FITS file, and the extension names are of the form
SPATNNNN-SLITMMMM-DET01 where the SPAT number describes the spatial pixel coordinate of the object and
the SLIT number is only useful for spectrographs with multiple slits (and the DET number is only useful for spec-
trographs with multiple detectors for the same arm). These files can be visually inspected using the command
pypeit_show_1dspec --exten N SPEC1D_FILE to view extension N of the file.

PypeIt 1D Coadd files redNNNN-redNNNN_target_SPATNNNN.fits described in more detail here. These
files exist to separate out multiple objects on the same frame into their own file, and to coadd consecutive exposures of
the same frame. These files can be visually inspected using the command lt_xspec COADD_FILE. The filename
contains the first and last raw data file and the medial spatial pixel coordinate of the object. This was done to make
the coadd filename of constant length, instead of scaling with the number of coadded frames, since all operating
systems/file systems have maximum allowed filename lengths.

Telluric-corrected 1D Coadd files have _tellcorr appended to the base filename of the coadd file.

In the directory $OUTPUT_PATH/spliced are the spliced final data products. The final data product of DBSP_DRP
is a FITS file named target_char.fits with structure described below, where char is a one letter designation
of which object along the slit it is.

17

https://pypeit.readthedocs.io/en/latest/out_spec2D.html
https://pypeit.readthedocs.io/en/latest/out_spec1D.html
https://pypeit.readthedocs.io/en/latest/coadd1d.html#current-coadd1d-data-model

DBSP𝐷𝑅𝑃

Table 1: table
Extension Number Name Header Data
0 PRIMARY Version info about DBSP_DRP,

PypeIt, numpy and astropy
None

1 RED0031 Header from raw red side fits file Fluxed (not telluric-corrected) red
side spectrum

2 RED0032 Header from raw red side fits file Fluxed (not telluric-corrected) red
side spectrum

3 BLUE0032 Header from raw blue side fits file Fluxed blue side spectrum
4 BLUE0032 Header from raw blue side fits file Fluxed blue side spectrum
5 RED Header from raw red side fits file Fluxed (and telluric-corrected) red

side spectrum
6 BLUE Header from raw blue side fits file Fluxed blue side spectrum
7 SPLICED Empty Final spliced spectrum

The header on the 0th extension also contains cards named B_COADD and R_COADD which contain the filename of
the blue and red coadd files, respectively, that were spliced together. This is useful for determining which traces a
particular final output file corresponds to. The 0th header also contains an INTERP_GAPS cards, noting whether or
not detector gaps were interpolated over during splicing. If the splicing has been manually adjusted (see Adjusting
splicing between arms for more details) then a RED_MULT card will also be present, recording the factor multiplied
into the red coadd spectrum before splicing with the blue coadd.

If n red side files were coadded and m blue side files were coadded, then extensions 1 through n would contain the red
side raw headers and fluxed spectrum from each individual file, extensions 1+*n* through 1+*n*+*m* would contain
the blue side raw headers and fluxed spectra from each individual file, and the last 3 extensions are the red coadd, blue
coadd, and final spliced spectrum.

If an object was not observed in the blue (red) then there will be no raw blue (red) frames, and the BLUE (RED)
extension would still exist, but contain no data.

Each of the data tables contain columns for wave, flux, and sigma, with wavelength in Angstroms and both flux and
sigma in units of 10-17erg/s/cm2/Ang.

18 Chapter 8. Data Reduction Outputs

CHAPTER 9

dbsp_drp

9.1 dbsp_drp package

9.1.1 Subpackages

dbsp_drp.tests package

Submodules

dbsp_drp.tests.test_splicing module

dbsp_drp.tests.test_table_edit module

19

DBSP𝐷𝑅𝑃

Module contents

9.1.2 Submodules

9.1.3 dbsp_drp.coadding module

9.1.4 dbsp_drp.fix_headers module

9.1.5 dbsp_drp.fluxing module

9.1.6 dbsp_drp.gui_helpers module

9.1.7 dbsp_drp.manual_aperture module

9.1.8 dbsp_drp.manual_tracing module

9.1.9 dbsp_drp.p200_redux module

9.1.10 dbsp_drp.qa module

9.1.11 dbsp_drp.quicklook module

9.1.12 dbsp_drp.reduction module

9.1.13 dbsp_drp.splicing module

9.1.14 dbsp_drp.table_edit module

9.1.15 dbsp_drp.telluric module

9.1.16 Module contents

20 Chapter 9. dbsp_drp

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

21

	Installing DBSP_DRP
	From Source
	Using pip

	Post-Install
	Testing your installation

	Using DBSP_DRP
	Using the Manual Tracing and Manual Aperture GUIs
	Manual Tracing GUI
	Manual Aperture and Sky Selection GUI

	DBSP_DRP QA Outputs
	DBSP Quicklook
	Usage

	Adjusting splicing between arms
	Data Reduction Outputs
	dbsp_drp
	dbsp_drp package

	Indices and tables

